Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Ann Transl Med ; 11(6): 253, 2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2229349

ABSTRACT

Background: Spontaneous breathing efforts during mechanical ventilation are a widely accepted weaning approach for acute respiratory distress syndrome (ARDS) patients. These efforts can be too vigorous, possibly inflicting lung and diaphragm damage. Higher positive end expiratory pressure (PEEP) levels can be used to lower the magnitude of vigorous breathing efforts. Nevertheless, PEEP titrating tools are lacking in spontaneous mechanical ventilation (SMV). Therefore, the aim is to develop an electrical impedance tomography (EIT) algorithm for quantifying regional lung mechanics independent from a stable plateau pressure phase based on regional peak flow (RPF) by EIT, which is hypothetically applicable in SMV and to validate this algorithm in patients on controlled mechanical ventilation (CMV). Methods: The RPF algorithm quantifies a cumulative overdistension (ODRPF) and collapse (CLRPF) rate and is validated in a prospective cohort of mechanically ventilated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients on CMV. ODRPF and CLRPF are compared with compliance-based cumulative overdistension (ODP500) and collapse (CLP500) rates from the Pulmovista 500 EIT device at multiple PEEP levels (PEEP 10 cmH2O to PEEP 24 cmH2O) in EIT measurements from CMV patients by linear mixed models, Bland-Altman analysis and intraclass correlation coefficient (ICC). Results: Seventy-eight patients were included. Linear mixed models revealed an association between ODRPF and ODP500 of 1.02 (0.98-1.07, P<0.001) and between CLRPF and CLP500 of 0.93 (0.80-1.05, P<0.001). ICC values ranged from 0.78 to 0.86 (P<0.001) for ODRPF and ODP500 and from 0.70 to 0.85 (P<0.001) for CLRPF and CLP500 (PEEP 10 to PEEP 24). The mean bias between ODRPF and ODP500 in these PEEP levels ranged from 0.80% to 4.19% and from -1.31% to 0.13% between CLRPF and CLP500. Conclusions: A RPF approach for quantifying regional lung mechanics showed a moderate to good agreement in coronavirus disease 2019 (COVID-19) related ARDS patients on CMV compared to the compliance-based approach. This, in addition to being independent of a plateau pressure phase, indicates that the RPF approach is a valid method to explore for quantifying regional lung mechanics in SMV.

2.
Digit Health ; 7: 20552076211005959, 2021.
Article in English | MEDLINE | ID: covidwho-1259162

ABSTRACT

BACKGROUND: A new digital peak flow meter, known as Smart Peak Flow (SPF), has been developed to monitor asthma patients' peak expiratory flow (PEF) at home. It is connected wirelessly to any type of smartphone and it is used by asthma patients to self-monitor progress of their clinical condition. Thus evaluation of the SPF's ability to provide accurate PEF values is essential. The aim of this pilot work was to provide preliminary in-vivo data about the measurement agreement between the SPF and a lab spirometer for a first time. METHODS: PEF measurements were obtained by 9 healthy adults as this pilot work was terminated earlier than it was expected due to COVID-19 restrictions. PEF readings (n=27) were recorded by the comparable devices at the same time during three different expiratory maneuvers performed by each participant. The Bland and Altman plot was used to assess the agreement. RESULTS: Good agreement between the SPF and the lab spirometer was found with the mean bias being estimated 0.29 L/min. The lower and upper limits of agreement (LOA) were estimated 30.03 L/min and -30.61 L/min respectively. CONCLUSION: Due to a small sample size, no firm conclusions can be drawn regarding the SPF's accuracy. However the current promising results encourage further testing in the future.

3.
Respir Care ; 66(8): 1291-1298, 2021 08.
Article in English | MEDLINE | ID: covidwho-1244286

ABSTRACT

BACKGROUND: Peak flow testing is a common procedure performed in ambulatory care. There are currently no data regarding aerosol generation during this procedure. Given the ongoing debate regarding the potential for aerosol transmission of SARS-CoV-2, we aimed to quantify and characterize aerosol generation during peak flow testing. METHODS: Five healthy volunteers performed peak flow maneuvers in a particle-free laboratory space. Two devices continuously sampled the ambient air during the procedure. One device can detect ultrafine particles 0.02-1 µm in diameter, while the second device can detect particles 0.3, 0.5, 1.0, 2.0, 5.0, and 10 µm in diameter. Five different peak flow meters were compared to ambient baseline during masked and unmasked tidal breathing. RESULTS: Ultrafine particles (0.02-1 µm) were generated during peak flow measurement. There was no significant difference in ultrafine particle mean concentration between peak flow meters (P = .23): Respironics (1.25 ± 0.47 particles/mL), Philips (3.06 ± 1.22), Clement Clarke (3.55 ± 1.22 particles/mL), Respironics Low Range (3.50 ± 1.52 particles/mL), and Monaghan (3.78 ± 1.31 particles/mL). Ultrafine particle mean concentration with peak flow testing was significantly higher than masked (0.22 ± 0.29 particles/mL) and unmasked tidal breathing (0.15 ± 0.18 particles/mL, P = .01), but the ultrafine particle concentrations were small compared to ambient particle concentrations in a pulmonary function testing room (89.9 ± 8.95 particles/mL). CONCLUSIONS: In this study, aerosol generation was present during peak flow testing, but concentrations were small compared to the background particle concentration in the ambient clinical environment. Surgical masks and eye protection are likely sufficient infection control measures during peak expiratory flow testing in asymptomatic patients with well controlled respiratory symptoms, but COVID-19 testing remains prudent in patients with acute respiratory symptoms prior to evaluation and peak expiratory flow assessment while the community prevalence of SARS-CoV-2 cases remains high.


Subject(s)
COVID-19 , Aerosols , COVID-19 Testing , Humans , Masks , Particle Size , SARS-CoV-2
4.
Laryngoscope Investig Otolaryngol ; 5(5): 796-806, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-734145

ABSTRACT

Objectives: There is a need to develop a medical device which can accurately measure normal and abnormal nasal breathing which the patient can better understand in addition to being able to diagnose the cause for their nasal obstruction.The aim is to evaluate the accuracy of the nasal acoustic device (NAD) in diagnosing the common causes for nasal obstruction and diagnosing normal and abnormal (nasal obstruction) nasal breathing. Methods: This pilot study recruited 27 patients with allergic rhinitis (AR), chronic rhinosinusitis (CRS), and a deviated nasal septum (DNS) which represents the common causes for NO and 26 controls (with normal nasal breathing). Nasal breathing sounds were recorded by the NAD akin to two small stethoscopes placed over the left and right nasal ala. The novel outcome metrics for the NAD include inspiratory nasal acoustic score (INA) score, expiratory nasal acoustic (ENA) score and the inspiratory nasal obstruction balance index (NOBI). The change in acoustic score following decongestant is key in this diagnostic process. Results: Pre-decongestant ENA score was used to detect the presence of nasal obstruction in patients compared to controls, with a sensitivity of 0.81 (95% CI: 0.66-0.96) and a specificity of 0.77 (0.54-1.00). Post-decongestant percentage change in INA score was used to identify the presence of AR or CRS, with a sensitivity of 0.87 (0.69-1.00) and specificity of 0.72 (0.55-0.89) for AR; and a sensitivity of 0.92 (0.75-1.00) and specificity of 0.69 (0.52-0.86) for CRS. Post-decongestant inspiratory NOBI was used to identify DNS, with a sensitivity of 0.77 (0.59-0.95) and specificity of 0.94 (0.82-1.00). Conclusion: We have demonstrated that the NAD can help distinguish between normal and abnormal nasal breathing and help diagnose AR, CRS, and DNS. Such a device has not been invented and could revolutionize COVID-19 recovery telemedicine. Level of Evidence: Diagnostic accuracy study-Level III.

SELECTION OF CITATIONS
SEARCH DETAIL